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ABSTRACT

Protein–protein complexes play key roles in all
cellular signal transduction processes. We have
developed a fast and accurate computational
approach to predict changes in the binding free
energy upon alanine mutations in protein–protein
interfaces. The approach is based on a
knowledge-based scoring function, DrugScorePPI,
for which pair potentials were derived from 851
complex structures and adapted against 309 experi-
mental alanine scanning results. Based on this
approach, we developed the DrugScorePPI

webserver. The input consists of a protein–protein
complex structure; the output is a summary table
and bar plot of binding free energy differences for
wild-type residue-to-Ala mutations. The results of
the analysis are mapped on the protein–protein
complex structure and visualized using J mol. A
single interface can be analyzed within a few
minutes. Our approach has been successfully
validated by application to an external test
set of 22 alanine mutations in the interface
of Ras/RalGDS. The DrugScorePPI webserver is
primarily intended for identifying hotspot residues
in protein–protein interfaces, which provides
valuable information for guiding biological experi-
ments and in the development of protein–protein
interaction modulators. The DrugScorePPI

Webserver, accessible at http://cpclab.uni-duesse
ldorf.de/dsppi, is free and open to all users with no
login requirement.

INTRODUCTION

Protein–protein interactions have important implications
in most cellular signalling networks (1). Interfering with
protein–protein interactions, on the one hand, bears the

potential to understand the function of regulatory units in
signaling networks and, on the other hand, offers a
promising way to develop new therapeutics (2,3). The
ability to inhibit protein interactions requires knowledge
about affinity and specificity in protein interfaces. A
powerful tool for analyzing crucial interactions in
protein interfaces is provided by experimental alanine
scanning mutagenesis (4). Alanine scanning measures the
change in binding free energy (��G) of a protein–protein
complex upon mutation of an amino acid residue
to alanine, i.e. the deletion of a sidechain beyond the
Cb carbon atom. Scanning all amino acids of a
protein–protein interface then yields a map of which inter-
actions are critical for protein binding and which ones are
not. In fact, protein–protein complex formation depends,
in most cases, on only a few interface residues that
account for the highest contribution to the binding free
energy (5,6). These residues are called ‘hotspots’ (7).
Despite significant advances in molecular biology,
alanine scanning still represents a large experimental
effort that cannot be applied easily to high-throughput
screening of protein–protein interfaces. Hence, there is
a strong need for computational approaches to detect
hot spots in modeled or experimentally determined
protein–protein complexes for which no experimental
mutagenesis data is available.

Here, we introduce the DrugScorePPI webserver, a new
webservice that offers a user-friendly way of performing
alanine scanning in silico. For that purpose, we have de-
veloped a fast and accurate computational alanine
scanning protocol that, for a given structure of protein–
protein complex, allows an automatic scanning of the
protein–protein interface within only a few minutes on a
single standard CPU. Our method is grounded on
knowledge-based pair potentials derived by following the
DrugScore formalism (8), which has already been applied
successfully to score protein–ligand (8) and RNA–ligand
interactions (9). For DrugScorePPI, the statistical poten-
tials were further fine-tuned against experimentally
determined alanine scanning results. Application to
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an independent external test set of alanine mutations
demonstrated the predictive power of the method. To
date, several computational tools have been developed
to perform alanine scanning in silico (10–12). The
novelty of the DrugScorePPI webservice is rooted, first,
in its high accuracy for predicting ��G values, and,
second, in its efficiency, allowing to score a single
mutant protein–protein complex within seconds.

The webservice is easy to use: as input, a PDB file of the
protein–protein complex of interest or a PDB code is
required, as is information about the protein chain(s)
that should be mutated. The results can either be
obtained by email or interactively visualized in the web
browser. The results contain a summary table plus a cor-
responding bar plot detailing computed ��G results, the
degree of buriedness of each mutated residue, and a note if
a side chain is potentially involved in a salt-bridge. In
addition, a PDB file is provided whose B-factor column
contains ��G values for visualization with common
molecule viewers. The visualization is also possible in
the web browser using the Jmol applet (http://jmol.
sourceforge.net). To the best of our knowledge, there are
no other web services for computational alanine scanning
that provide a similar level of integrated structural
analysis and visualization capabilities.

MATERIALS AND METHODS

Distance-dependent pair potentials and binding score

For deriving the distance-dependent pair-potentials of the
DrugScorePPI scoring function, the same formalism was
applied as already described for the DrugScore scoring
function for protein�ligand complexes (8). The
knowledge-based pair potentials for scoring protein–
protein interactions have been derived from 851 crystallo-
graphically determined protein–protein complexes using
an in-house mySQL database that contains structural in-
formation of all PDB entries (E. Schmidt, S. Derksen and
H. Gohlke, unpublished results). The dataset consists of
655 homodimers and 196 heterodimers (13). In all of the
cases, the complexes had been resolved to at least 2.5 Å.
PDB codes of all complexes used for deriving the poten-
tials are listed in ref. (13). Potentials were derived for all
DrugScore standard atom types that occur in the 20
natural amino acids (8).

Adaptation of pair potentials using experimental alanine
scanning results

DrugScorePPI was used for computational alanine-
scanning on a dataset of 18 protein–protein complexes
with a total of 309 alanine mutations (14)
(Supplementary Table S1). These mutations were
obtained out of �3000 mutations reported in ASEdb
(14) by omitting those mutations (i) for which no PDB
structure was available for the protein–protein complex,
(ii) which are more than 5 Å away from a respective
binding partner because this value is the upper distance
limit of the DrugScorePPI potentials and (iii) that stabilize
loops or form interactions to other structural elements
within the same protein but do not interact with the

binding partner. ��G values associated with the latter
mutations will very likely report on the stabilization or
destabilization of the structure of the one protein rather
than on changes in the interactions with the corresponding
binding partner. See Supplementary Figure S4 for an
example of such a mutation. The average experimental
uncertainty for 78 (PDB codes of the corresponding
complexes: 1a22, 1a4y, 1bxi, 1dfj, 3hfm) of the 309 muta-
tions amounts to 0.31 kcal mol�1. Computed and experi-
mental ��G values showed a linear correlation with a
coefficient r=0.58 (Table 1, Supplementary Figure S1)
and a standard deviation of 1.06 kcalmol�1 when the
original pair potentials were applied. The linear correl-
ation is statistically significant according to a P-value
< 0.05.
To improve the predictive power of DrugScorePPI, we

decided to adapt the weighting of the distance-dependent
pair potentialsW(d) in the summation that yields the score
for each wild-type amino acid-to-Ala mutation of residue
R with atoms r with respect to residues B of the binding
partner, which consist of atoms b [Equations (1) and (2)]:

��Gcalc ¼ DrugScorePPI R ¼ Alað Þ

�DrugScorePPI R ¼ wildtype aað Þ
ð1Þ

with
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For this, we identified 24 residue-specific atomtypes Tv,
e.g. C.3. in Val, C.3. in Leu, C.3. in Phe and so on. Pair
potential contributions with low standard deviations
across the training set were identified initially, and the
respective atomtypes Tc were excluded from fitting.
These pair potentials were scaled by a factor s. Finally,
the degree of buriedness DOB(R) of each residue was used
as an additional descriptor scaled by k. The coefficients
cT(r), s and k (Supplementary Table S3) were then
determined by correlating experimental and computed
��G values employing partial least squares regression
as implemented in MatLab (http://www.mathworks.
com). The thus adapted potentials improve the correlation
to rtrain=0.73 (Supplementary Figure S2) with a root
mean square deviation of 0.84 kcal mol�1 (Table 1). A
leave-one-mutation-out cross-validation analysis yielded
rLOO=0.64 and STD=0.94 kcal mol�1 (Supplementary
Figure S3). A more stringent leave-one-complex-out
cross-validation yielded rLCO=0.63 and
STD=0.96 kcalmol�1. Both these validations clearly
demonstrate the robustness of the model. Finally,
a leave-homologous-complexes-out cross-validation
yielded rLHO=0.80 and STD=0.81 kcalmol�1. To
perform a leave-homologous-complexes-out cross-
validation, we skipped all ribonuclease-like complexes
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(PDB ID’s: 1A4Y and 1DFJ) from the dataset and pre-
dicted ��G values for them using adapted potentials
derived from the rest of the dataset. The identification of
homologous complexes was performed using the
ProCKSI-Server (http://www.procksi.net) in this case.
For comparison, when original DrugScorePPI potentials
were used to predict ��G values for the ribonuclease-like
complexes, r=0.49 and STD=1.30 kcal mol�1 resulted.
In our opinion, this clearly points out an improved pre-
dictive power of the adapted potentials compared to the
original ones. Finally, we performed an all-against-all
similarity search with the FASTA algorithm for all
chains of all protein complexes and further analyzed the
results by creating a standardized distance matrix. Out of
2048 chain comparisons, only 32 showed significant
sequence similarities, thus pointing out the overall diver-
sity of our dataset, which again speaks for the robustness
of the model.

Alanine scanning procedure

The flow chart of the DrugScorePPI webservice is depicted
in Figure 1. The DrugScorePPI webserver requires a PDB
file of the protein–protein complex as input, which is
either downloaded from the RCSB Protein Database
(15) or provided by the user. First, all non-peptide mol-
ecules and hydrogen atoms are deleted, and all interface
residues in a protein–protein interface are identified based
on the user-defined chain information. A residue is defined
as to be in the interface if it has at least one atom within
5 Å radius of an atom belonging to a binding partner in
the protein–protein complex. Next, the degree of
buriedness is calculated for each of the interface residues
to describe a sidechain’s surrounding by considering the
number of atoms of nearby residues within a radius of 4 Å.
The higher this number, the more buried is a sidechain.
Then, pairs of residues that are potentially involved in a

salt-bridge, i.e. Asp or Glu within 4 Å distance to Arg or
Lys, are detected. Both, the degree of buriedness and the
salt-bridge detection are meant to provide a first hint to
users for potential hotspots. Finally, each of the interface
residues is individually replaced with Ala, and the effect of
this mutation on the binding free energy of the complex
(��G) is computed.

Description of the webserver

Input. The DrugScorePPI webservice submission page is
shown in Figure 2. The DrugScorePPI webservice
requires a structure of the protein–protein complex
provided as PDB file or PDB code, chain identifier(s),
and rewriting of a given security code to prevent misuse
of the webservice. Optionally, an email address may be
provided, in which case the results will be sent to that
address. Otherwise, a link to a result page is provided
after job submission in order to view the results in the
web browser. These results will be stored on the server
for ten days.

Providing valid chain identifiers is crucial, for they de-
termine (i) the chain(s) of interest on which interface
residues will be mutated to Ala and (ii) which other
chains of the protein–protein complex will be considered
as ‘corresponding chains’. ‘Corresponding chains’ are
those chains that interact with the chain(s) of interest. It
is strongly recommended that all chain identifiers of one
binding partner be provided, as otherwise intramolecular
interactions within this binding partner will also be con-
sidered for the ��G computation. If a PDB file with a
valid header section is provided, a warning will be issued if
this recommendation is not followed.

Some restrictions apply to the PDB input file: (i) Only
standard protein residues are considered for ��G compu-
tations. (ii) Hydrogen atoms are neither required for nor

Data preparation 1. Removing hydrogens
2. Removing non-peptide molecules
3. Automatic definition of interface residues

Compute DGWT
complex

Input 1. PDB code or user defined PDB file
2. Chain(s) that should be mutated

Wild type In silico alanine mutations

Output 1. Table with predicted changes in the binding free energy, 
possible formation of saltbridges, and degree of buriedness.

2. Bar plot corresponding to 1.
3. PDB file with predicted DDG values in the B-factor column.
4. Visualization via Jmol in the web browser.
5. Information about missing residues/atoms.

Compute DGMUT
complex

Compute DDG = DGMUT
complex - DGWT

complex

Compute buriedness & detect possible saltbridges

Figure 1. Flowchart of the DrugScorePPI webservice illustrating the
in silico alanine scanning procedure.

Table 1. Statistical parameters for computed versus experimental

alanine scanning results on the training set

DrugScorePPI,a Adapted
DrugScorePPI,b

Leave-one-
mutation-outc

Leave-one-
complex-outd

re 0.58 0.73 0.64 0.63
STDf 1.06 0.84 0.94 0.96
P <0.05 <0.05 <0.05 <0.05
Fg 158.48 345.16 214.72 198.88

aThe original DrugScorePPI pair potentials were applied.
bDrugScorePPI pair potentials were applied whose mutual weighting has
been adapted.
cLeave-one-mutation-out cross-validation analysis with adapted
DrugScorePPI potentials.
dLeave-one-complex-out cross-validation analysis with adapted
DrugScorePPI potentials.
eCorrelation coefficient. In the case of the leave-one-mutation-out
(leave-one-complex-out) analysis, the value of the rLOO (rLCO) coeffi-
cient is given.
fStandard deviation in kcal mol�1. In the case of the
leave-one-mutation-out and leave-one-complex-out analyses,
STD=[PRESS/(n�1)]1/2 is given, where PRESS equals the sum of
squared differences between predicted and experimentally determined
binding affinities and n is the number of data points.
gFisher’s F-value.
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considered during the computation, as the DrugScorePPI

scoring function is only based on non-hydrogen atoms.
Accordingly, for amino acid sidechains a standard proton-
ation is assumed, i.e. Asp and Glu are treated as
deprotonated, Arg, Lys and His as protonated. (iii)
Alternative side chain conformations in the interface are
not allowed. If present in the PDB file, an error message
will be issued.

Output. A typical run of the DrugScorePPI webservice
takes a few minutes. Upon completion of a job, either
an email is sent with the results or the results are presented
in the web browser. Both the email and the results page
contain a PDF and a PDB file.

Summary of results. The first part of the PDF file contains
a summary table with four columns (Figure 3A). These
columns contain, from left to right: (i) the three-letter
code of the mutated residue, the residue number and the
chain identifier; (ii) the computed relative binding free
energy difference ��G for the amino acid-to-Ala
mutation, with positive values indicating a potential hot
spot residue; (iii) the degree of buriedness for each side
chain in the interface; (iv) a note as to whether a residue is
potentially involved in a salt-bridge. The second part of
the PDF file contains a corresponding bar plot of the
��G results for mutated amino acids (Figure 3B). The
PDB file contains the input protein–protein complex
structure with computed ��G values in the B-factor
column. This file can be used to color residues in the inter-
face according to their sidechains’ contributions to the
binding free energy, e.g. with PyMol (http://pymol.sour
ceforge.net) or VMD (http://www.ks.uiuc.edu/Research/
vmd/). Finally, warnings are provided about input struc-
ture characteristics that might have influenced the results
(Figure 4A). As such, a list of missing residues and/or
atoms as declared in the PDB header is presented
because missing interface atoms or residues will certainly
lead to false ��G computations. Furthermore, if corres-
ponding information is available in the PDB header, a
warning is issued if not all chain identifiers of one
binding partner have been provided, as in this case intra-
molecular interactions within this binding partner were
also considered for the ��G computation.

Annotated structure. In the web browser, alanine scanning
results by DrugScorePPI are visualized directly by mapping
��G values onto the protein–protein complex structure
using the Jmol applet (http://jmol.sourceforge.net)
(Figure 4C). For this, residues in the interface are repre-
sented by a color code according to their sidechains’ con-
tribution to the binding free energy, with reddish colors
indicating hot spot residues, as detailed by the provided
color scale. The chain(s) of the protein for which residue
contributions were calculated is (are) colored in white; the
corresponding chain(s) of the binding partner(s) is (are)
colored in magenta.

Limitations. Based on the implementation of our
approach, several assumptions are made that can affect
the applicability of the method, which should be con-
sidered when interpreting the results. (i) As ��G values
are calculated from the protein–protein complex structure
only, both binding partners are assumed to have the same
unbound and bound conformations, respectively.
Consequently, contributions to ��G due to changes in
intramolecular interactions upon complex formation are
not considered, which poses a limitation in those cases
where conformational changes upon binding and/or
unfolding-to-folding transitions of the binding partners
are expected. (ii) Non-peptide ligands, cofactors, metal
ions and water molecules are not taken into account.
Energetic contributions to ��G for sidechains contacting
these molecular species are thus missing. (iii) Due to the
nature of knowledge-based scoring functions, all terms in
DrugScorePPI are pairwise additive. For that reason, co-
operative effects between mutations, as have been
observed in double-mutant cycles (16), are not taken
into account. This is also a reason why indirect effects
exerted by residues not making direct interactions in the
interface are generally not captured, as described above.
Likewise, only interactions between atoms at a distance
< 5 Å are scored, thus neglecting long-range contributions
due to, e.g. electrostatic interactions. Finally, the
knowledge-based potentials represent ‘effective pair
energies’ (8,17) and, thus, are expected to implicitly
cover van der Waals, electrostatic and (de-)solvation con-
tributions. However, they neglect changes in the dynamics
of the binding partners upon complex formation, which
can lead to significant entropic contributions to ��G (17).
(iv) The symmetry of protein–protein complexes is not
taken into account. That is, in symmetric interfaces,
only one residue at a time is considered during alanine
scanning, whereas symmetry-related corresponding
residues in the other binding partner(s) are modeled as
wild-type. However, due to the additive nature of the
pair potentials, single contributions of symmetry-related
residues may be added.

Implementation. The DrugScorePPI webserver has been
implemented in Python, as have been the subroutines to
calculate the degree of buriedness and to detect possible
saltbridges. The DrugScorePPI scoring routine has been
implemented in C++. Given the low computational
demand of our approach, up to 10 submitted jobs can
be run in parallel at present.

Figure 2. Screenshot of the DrugScorePPI webserver submission page.
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Figure 3. Summary of results example of computational alanine scanning on the structure of interleukin-2 complexed with its alpha receptor (PDB
code: 1Z92): Table (A) and bar plot (B) of binding free energy differences for wildtype residue-to-Ala mutations. Positive binding free energy
differences indicate a potential hot spot residue. In addition to the binding free energy differences, in (A) the degree of buriedness of a sidechain is
given, as is a note as to whether the sidechain is involved in a salt bridge.
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Application to the protein-protein complex Ras/RalGDS

To evaluate the predictive power of the DrugScorePPI

webservice using the adapted DrugScorePPI potentials,
��G values were computed for interface residues in the

protein–protein complex Ras/RalGDS (PDB code: 1lfd)
and compared to experimental values for 22 alanine
mutants (Supplementary Table S2) taken from ref. (18).
We note that the Ras/RalGDS complex was not part of
the training set to adapt the pair potentials and, thus,
provides an independent external test case. A predictive
correlation coefficient rpred=0.66 was found (Table 2),
which is close to rLOO=0.64 from the leave-one-
mutation-out cross-validation, again demonstrating the
robustness of the model. The predictive power of the
adapted DrugScorePPI scoring function was then
compared to four other computational methods that are
able to predict changes in the binding free energy upon
alanine mutations in protein interfaces: FoldX (12), MM/
GBSA (17), the CC/PBSA method (19) and Robetta (20)
(Figure 5). As demonstrated by the statistical parameters
given in Table 2, the adapted DrugScorePPI potentials
significantly outperform the CC/PBSA, FoldX and
Robetta methods with respect to predictive power and
perform as good as the MM/GBSA method, which had
been applied to a subset of 16 mutations. In addition,
DrugScorePPI is the most efficient method, as it only
requires about three seconds per residue for this system
on a standard CPU.
We note that the external validation dataset consisting

of 22 mutations is rather small. However, the lack of a
reasonably large and independent test set to validate
and compare different methods is a common problem
in this field. At least for the adapted DrugScorePPI

potentials, due to the overall diversity of our training
dataset, each leave-one-complex-out cross-validation step
comes close to testing against an independent test set.
Thus, we consider this cross-validation (Table 1) to
be strongly indicative of the predictive power of our
method.

CONCLUSIONS

The development of the DrugScorePPI webserver was
motivated by a growing demand for comprehensive tools
assisting research in the field of protein–protein recogni-
tion. The DrugScorePPI webserver allows fast and accurate
in silico alanine scanning based on adapted
knowledge-based distance-dependent pair potentials. The
approach has been successfully validated on an independ-
ent external test set, and the results on this dataset
compare favorably with other established methods. The
DrugScorePPI webserver is primarily intended for identify-
ing hotspot residues in protein–protein interfaces.
Knowledge of potential hotspot residues is valuable for
guiding biological experiments and in the development
of protein-protein interaction modulators (2). A user-
friendly interface, minimal demands on input information,
and a detailed output as well as an embedded visualization
capability make this web server potentially useful for users
without a prior knowledge of structural bioinformatics
analyses. Overall, we expect the DrugScorePPI webserver
to be a valuable tool for predicting hotspots in protein–
protein interfaces.

Figure 4. Screenshot of the results page for computational alanine
scanning on the structure of interleukin-2 complexed with its alpha
receptor (PDB code: 1Z92). (A) A warning is issued because of
missing residues and/or atoms in the PDB file. Missing residues and/
or atoms can have a pronounced impact on the computed ��G values.
(B) Links to a PDF file containing a table and a bar plot of the alanine
scanning results and to a PDB file with predicted relative binding free
energy differences in the B-factor column. (C) An embedded Jmol
applet allows visualization of the annotated complex structure.
Residues in the interface are represented by a color code according
to their sidechains’ contribution to the binding free energy, as defined
in the color scale below. The chain(s) of the protein for which residue
contributions were calculated is (are) colored in white; the correspond-
ing chain(s) of the binding partner is (are) colored in magenta.
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aThe adapted DrugScorePPI pair potentials were applied.
bCalculations were performed using the CC/PBSA server (19).
cCalculations were performed using the FoldX program, version 5.0,
with default settings (12).
dThe rpred value was taken from ref. (17) and had been determined
there for a subset of 16 mutations. No STD value was reported in
ref. (17). Note that in Figure 3B in ref. (17), experimental ��G
values solely determined by ITC measurements are reported. In
contrast, experimental ��G values from ref. (18) considered in the
present study (Supplementary Table S2) are average values from an
ITC experiment and a GDI assay.
eCalculations were performed using the Robetta server (20).
fPredictive r.
gStandard deviation in kcal mol�1.
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